フィールドロガー ELF-100A 取扱説明書

株式会社東横エルメス 東亞エルメス株式会社

1. 仕様

型式	ELF-100A			
適合検出器	ひずみゲージ形	カールソン形	差動トランス形	ポテンショメータ形
測定範囲	±19999×10 ⁻⁶ st 下記 ±1999.9 mV		99.9 mV	
分解能	1 × 10⁻⁵ st	下記	0.	1 mV
確度	0.125 %以内	0.125 %以内 下記 0.1 %以内		%以内
検出器への供給電源	14.28 mA±0.2%	$30.00 \text{ mA} \pm 0.2\%$	$50.00 \text{ mA} \pm 0.5\%$	20.00 mA $\pm 0.2\%$
接続点数	最大 50 点	最大 25 点	最大	、50 点
サンプリング速度	0.8 秒/ch			
データメモリー数	4950 データ(50ch×99回)			
バッテリーバックアップ	全システム:4 時間、RAM・時計部:約2ヶ月			
インターフェース	RS-232C			
許容使用条件	温度:0~+45 ℃、湿度:85 %RH 以下(ただし結露のないこと)			
電源	AC100 V±10 V 50∕60Hz			
	W454 × H414 × D257 mm			
質量	約 16 kg			

<u>■カールソン形仕</u>様

	抵抗比	抵抗值
測定範囲	95.00 ~ 105.00 %	40.00 ~ 100.00 Ω
分解能	0.01 %	0.01 Ω
確度	±0.03 %FS±1digit 以内	±0.05Ω±1digit 以内

■RSユニット仕様

型式	RS-485		
シリアル通信	RS485	FD485	
伝送速度	300,600,1200,2400,4800,9600 bps		
入力抵抗	12 kΩ 以上(終端抵抗無し)		
入力感度	±200 mV 以上		
同相入力電圧	+12~-7 V		
		入力(±)1 信号 平衡伝送	
信号線		出力(±)1 信号 平衡伝送	
	1P ツイストペアケーブル	2P ツイストペアケーブル	
	端子台(4P)	端子台(4P)	
入出力	へ ロ 光 列 控結	A:入力端子(RX)	
	A,D 並列投税	B∶出力端子(TX)	
終端抵抗	100 Ω		
接続台数	最大 32 台		
伝送距離	最長 1.2 km		

・RS ユニットはオプションです。

2. 各部名称及び機能

図-1 パネル外観

1 POWER LED

POWER スイッチが ON の際に点灯します。通常は緑色ですが内部のバッテリーを充電中にはオレンジ 色になります。

- POWER スイッチ フィールドロガーの電源を ON-OFF する為のスイッチです。
- ③ 電源コネクター
 - AC100V 電源入力用コネクターです。1 ピンと2 ピンは AC100V 入力用で3 ピンはアース端子です。
- ④ アース端子 本体を大地に接地するための端子です。
- ⑤ ヒューズホルダー
 POWER 用のヒューズ(T0.5A)が入っています。
- ⑥ ボックスナンバー設定スイッチ ボックスナンバーを設定する為のスイッチです。RS485 で通信する際は同じナンバーが重複しないよう に注意して下さい。
- ⑦ EXT POWER SUPPLY 端子
 外部よりセンサーに電源を供給する際に使用します。
- ⑧ LCD 表示器
- データ確認及びキー操作をする際に表示器の確認を行います。
- ⑨ キーボード
 - F1:MONITOR 動作を行うためのスイッチです。
 - F2:時刻設定をするためのスイッチです。
 - F3:RS-232Cのボーレートを設定するためのスイッチです。
 - F4:測定間隔を設定するためのスイッチです。
 - F5:セルフチェック機能のためのスイッチです。
 - F6:本体の初期化をするための設定スイッチです。
- 1 RS232C コネクター

RS232C の通信を行うためのコネクターです。

図一2 外観

① 入力ターミナル

センサーへの接続端子です。

R :	定電流源 HOT 側	(出力端子)
В:	定電流源 COM 側	(出力端子)
W :	センサー出力端子 HOT 側	(入力端子)
G :	センサー出力端子 COM 側	(入力端子)
Ε:	アナロググランド	

12 取っ手

本体を持ち上げるための取っ手です。

13 固定棒

入力ケーブルを固定するための固定棒です。

3. 画面表示と操作

3.1 POWER ON

POWER スイッチ②を ON へ倒すと、POWER LED①が点灯し、LCD⑧に初期画面が表示されます。

TOYOKO ELMES CO		
ELF-100	V e r*. **	
LCD 初期画面		

本機器はバッテリーが内蔵してありますので、停電時でも長時間動作可能です。 また、POWER ON になると自動的にバッテリーを充電します。

3.2 モニター画面

POWER ON 約10秒後、モニター初期画面になります。 年 月 日,時刻, RS232C、RS485のボーレート等を表示します。

99/09/01	<9600>
21:10:00	[F*]
モニター	初期画面

年/月/日/ <ボーレート>
時:分:秒ファンクションキー

3.3 モニター測定[F1]

直接、測定データを確認する事ができます。 モニター初期画面より、[F1]キーを入力するとモニター測定画面になります。

[F2] ALL	CHANNEL
[F3] ONE	CHANNEL

モニター測定画面

(1) 全 CH モニター測定を行う場合 [F1]- [F2]
 モニター画面より[F2]キーを選択します。
 直ちに CH1~50 まで測定を行います。
 測定終了したら、モニター初期画面に戻ります。

MONITOR YESリターン

[エンター]キーで測定開始します。

MONITOR	CH = ##
measuring	
モニター	·測定中

MONITOR	CH = ##
[G] +****	*.** µ ST
測定デ-	ータ表示例

途中で[F1]or[<]or[>]キーを入力すると、測定を中止しモニター初期画面に戻ります。

(2) CH モニター測定を行う場合 [F1]- [F3]モニター画面より[F3]キーを選択します。

MONITOR	CH=01
1CH モニ	ター表示

CH 変更は[INC]or [DEC]で行います。

MONITOR CH = **

**CH モニター表示

[リターン]で連続的に指定 CH を測定します。

MONITOR CH = ## measuring . . .

モニター測定中

MONITOR CH=##

 $[G] +**** .** \mu ST$

測定データ表示例

- [<]or [>]キーを入力すると、測定を中止し1CHモニター画面に戻ります。 [F3]キーを入力するとモニター初期画面に戻ります。 1CHモニターは、1CHより表示します。
- 3.4 日付け、時刻の設定 [F2]
 出荷時に予めセットしてあります。
 POWER OFF しても時計は自動的に更新します。
 - (1)日付けの設定 [INC] [DEC]モニター初期画面より[F2]キー入力で、日付け設定画面になります。

	-	
SET '99/09/01		セットしたい年/月/日
DATE '99/09/01]	時計進行中の日付け

日付設定画面

ブリンクしている箇所がデータ設定できます。 データ変更は[INC]or [DEC]で行います。 ブリンク箇所を変更するとキーは[<]or [>]で行います。 [リターン]で設定入力完了になり、ブリンクは先頭になります。 (2)時刻の設定 [INC] [DEC]日付設定画面より[F2]キー入力で、時刻設定画面になります。

TIME	20:10:09	••••	時計進行中の日付け
SET	20:10:09		セットしたい時:分:秒

時刻設定画面

ブリンクしている箇所がデータ設定できます。 データ変更は[INC]or [DEC]で行います。 ブリンク箇所を変更するとキーは[<]or [>]で行います。 [リターン]で設定入力完了になり、ブリンクは先頭になります。

(3) 日付け、時刻設定完了 [F2] - [F2] 時刻設定後、[F2]キー入力すると、モニター初期画面に戻ります。

3.5 RS232C、(RS485)ボーレート設定 [F3] 本機器は、インターフェースとしてRS232Cを標準装備しています。このボーレートを設定します。 [F3]キーを入力すると、ボーレート設定画面になります。

RS232C bps=9600	
RS485	・・・・・RS485ユニット実装時
ボーレート設定画面	

ボーレートは、300,600,900,1200,2400,4800,9600の何れかに設定できます。 [INC]or[DEC]により、ボーレートを設定します。 ボーレートの設定は、RS232C・RS485共同じ値になります。 再び[F3]キーを入力すると、ボーレートが設定されたモニター初期画面に戻ります。

3.6 測定条件の設定 [F4]

測定開始時刻[F1]、インターバル測定の測定間隔[F2]、センサータイプ[F3]、 初期値のイニシャル値[F5]、校正係数のイニシャル値[F6]を設定できます。 [INC]-[DEC]キーで画面を変更します。

(1) 測定開始時刻の設定 [F4]-[F1]

測定開始時刻を設定します。90年代以下の過去の時刻はキャンセルします。

[<]or[>]でカーソルを移動し、[INC]or[DEC]で日時を変更し[リターン]で設定します。 [F1]キーを入力すると、測定条件画面に戻ります。

(2) インターバル測定時間間隔の設定 [F4] - [F2] インターバル測定時間間隔を設定します。

[<]or[>]でカーソルを移動し、[INC]or[DEC]で日時を変更し、[リターン]で設定します。 [F2]キーを入力すると、測定条件画面に戻ります。

INTERVAL D00 H00 M00 インターバル設定画面

[F4]キー入力すると、モニター初期画面に戻ります。

- (3) センサータイプの設定 [F3]
 - [<]or[>]でCHを選択し、[INC]or[DEC]でセンサータイプの種類を選択します。 [リターン]キー入力すると、測定条件画面に戻ります。

SENSOR	CH**-<>
TYPE	\$

センサータイプ設定画面

センサータイプ変更順

 \rightarrow N \rightarrow D \rightarrow G \rightarrow P \rightarrow C \rightarrow E \rightarrow T \rightarrow K \rightarrow S \rightarrow N へ戻る

CH00は、全CH同じセンサータイプを設定します。 また、この時のセンサータイプの表示はCH01のセンサータイプになります。

[F4]キー入力すると、モニター初期画面に戻ります。

(4) 初期値の確認とイニシャライズ値の設定 [F4] - [F5]
 CH毎に初期値を見ることが出来ます。また、CH毎に初期値を0に設定できます。
 [<]or[>]でCHを選択します。
 また[DEC]キーで校正係数を0に変更し[リターン]キーで設定します。CHはインクリメントします。
 [F5]キー入力すると、測定条件画面に戻ります。

INITIAL VALVE CH01=+00000.0000

初期値画面

[F4]キー入力すると、モニター初期画面に戻ります。

CH毎に校正係数を見ることが出来ます。また、CH毎に校正係数を11に設定できます。

[<]or[>]でCHを選択します。

また[DEC]キーで校正係数を1に変更し[リターン]キーで設定します。CHはインクリメントします。 [F6]キー入力すると、測定条件画面に戻ります。

CALI-COEFFICIENT	
CH01=+00001.0000	

校正係数画面

[F4]キー入力すると、モニター初期画面に戻ります。

3.7 セルフチェック [F5]-[F1]
 ハードウェアのステータスをチェックする機能です。
 チェック箇所は、 AC100V 有無
 内蔵バッテリー電圧の状態
 アンプのオフセットの値
 メモリー です。

モニター初期画面より、[F5]→[F1]キー入力すると、セルフチェック画面になります。

[INC]OR [DEC]で、YES に表示にし、[リターン]でチェック開始します。

SELLF CHECK		
Please Wait 9	10秒間待機	
セルフチェック初期画面		
SELE CHECK		
SELF CHECK	AC OK	AC100V版到
AC OK	AC DOWN	バッテリー駆動
チェック画面		
SELF CHECK		
BATTERY HIGH		
 チェック画面		
BATTERY HIGH	バッテリー雷圧	12 5V V/ F
BATTERY MIDDLE	バッテリー雷圧	$11.5V \sim 12.5V$
BATTERY LOW	バッテリー電圧	E 11.5V 以下
SELF CHECK		
AMPOFFSET ±****		
チェック画面		
SELF CHECK	MEMORY OK	
MEMORY OF		
	MEMORY ERR *	**** エフー時のゲトレスを表示
 チェック画面		

MEMORY OKであれば、2秒間待機して、セルフチェック画面に戻ります。 MEMORY ERRであれば、何れかのキー入力で、セルフチェック画面に戻ります。

モニター初期画面に戻るときは、セルフチェック画面で、[F5]キー入力します。

3.8 メモリーの初期化 [F6] 本機器内部のメモリーのイニシャライズを行います。 対象機能は、

インターバル測定	実行/停止/待機の状態
測定データのRESET	IDを表示、クリア
初期値のRESET	全CHをOIこ設定
校正係数の RESET	全 CH を 1 に設定
センサータイプの RESET	全 CH を N に設定

です。

RUN

(1) インターバル測定状態 & 設定 [F6] - [F1] モニター初期画面より、[F6]キー入力すると初期化画面1になります。

[F1] MEASURE=WAIT		
$\begin{bmatrix} F2 \end{bmatrix}$ ID No. = \$\$		

初期化画面1

初期化画面1より、[F1]キー入力すると測定状態 & 設定画面になります。

		_		
MEASURE	<wait></wait>		現在の測定状態	
	STOP		測定の設定	WAIT
		-		STOP

測定状態 & 設定画面

[INC]or [DEC]キーで、WAIT, STOP, RUNを選択します。 [リターン]キーで、測定の設定が確定します。

WAIT	 設定後、初期画面1に戻ります。
	測定は次回測定時間から開始します。
STOP	 設定後、インターバル測定を停止します。
	初期画面1に戻ります。
RUN	 設定後、直ちに自動測定を開始します。
	測定終了後、WAIT状態になります。

モニター初期画面に戻る時は、初期画面1に戻り[F6]キー入力します。

(2) メモリーの初期化 [F6] - [F2] 初期画面 1 より、[F2]キー入力するとメモリー初期化画面になります。

ID No. = 00 <\$\$> NOリターン メモリー初期化画面

[INC]or[DEC]キー入力で、YES, NOを選択します。 YES表示で[リターン]キー入力すると、測定データをクリア、ID No. は 00になり、メモリー初期化 画面に戻ります。 モニター初期画面に戻る時は、初期画面1に戻り[F6]キー入力します。

(3) 初期値の RESET [F6] - [F3]
 初期化画面 1 より、[INC] or [DEC] or [F3] キー入力すると初期値画面 2 になります。

[F3]	INITVAL		
[F4]	COEFFICIENT		

初期値画面 2

初期化画面 2 より、[F3]キー入力すると初期値 RESET 画面になります。

[INC]or [DEC]キーで、YES, NOを選択します。 YES表示で[リターン]キー入力すると、全CHの初期値が0になり、初期化画面2に戻ります。

モニター初期画面に戻る時は、初期画面2に戻り[F6]キー入力します。

(4) 校正係数の RESET [F6] - [F4]
 初期化画面 2 より、[F4]キー入力すると校正係数 RESET 画面になります。

COEFFICIENT ALL-CH=1 NOリターン 校正係数RESET画面

[INC]or [DEC]キーで、YES, NOを選択します。 YES表示で[リターン]キー入力すると、全CHの校正係数が1になり、初期化画面2に戻ります。 モニター初期画面に戻る時は、初期画面2に戻り[F6]キー入力します。

(5) センサータイプの RESET [F6] - [F5]
 初期化画面 1 より、[INC] or [DEC] or [F5] キー入力すると初期値画面 3 になります。

初期化画面3

初期化画面3より、[F5]キー入力するとセンサータイプRESET画面になります。

ALL-CH=N NOリターン

初期化画面3

SENSOR TYPE

[INC]or[DEC]キーで、YES, NOを選択します。 YES表示で[リターン]キー入力すると全CHのセンサータイプがNになり初期化画面3に戻ります。

モニター初期画面に戻る時は、初期画面3に戻り、[F6]キー入力します。

3.9 画面表示&キー操作 一覧

4. 測定

本機器は、モニター測定,インターバル測定,RS通信測定の3通りの測定モードがあります。

3.1 モニター測定

モニター測定は、パネルキー操作で直ちに測定結果を読み取れる方法で、測定結果をLCDに表示します。

・測定は、CH1~CH50まで連続に行い、その都度測定結果をLCDに表示します。 ・測定データは、メモリーに格納しません。

3.2 インターバル測定

インターバル測定は、自動測定モードでパネルキー操作および RS 通信で測定開始時刻、時間間隔 を設定してデータ収録する方法です。

・測定は、CH1~CH50まで連続に行いますが、その結果をLCDに表示しません。 ・測定データは、メモリーに格納します。

99/09/01 MEASURE 21:15:38 I-CH**

モニター初期画面がインターバル測定になったら 左図の様になります。

インターバル測定中の画面

3.3 RS 通信測定

RS232C および RS485(オプション)を介して、測定する事も出来ます。

・測定はCH1~CH50まで連続またはCH指定で行いますが、その結果をLCDに表示しません。 ・測定データは、メモリーに格納します。

左図の様になります。

モニター初期画面がRS通信測定になったら

RS通信測定中の画面

99/09/01 MEASURE

21:15:40 M- CH**

 99/09/01 TRANS . .
 モニター初期画面がRS通信になったら

 21:15:40
 左図の様になります。

RS通信中の画面

3.4 測定の優位度

測定モードが重複した時の優位度は以下の通りになります。

・インターバル測定中		RS通信が入ると、測定コマンドと削除コマンド時はBUSYを返します。その
		他のコマンドは実行します。
		パネルキー入力はキャンセルします。
▪RS通信中	• • •	インターバル測定時刻になったら、測定コマンドと削除コマンド時は、通信
		終了後インターバル測定を開始します。次回の測定開始時刻の変更はしま
		せん。その他のコマンドは実行します。
		パネルキー入力はキャンセルします。
・モニター測定中		インターバル測定時刻になったらモニター測定を中止しRS通信を行います
		RS 通信が入っても、モニター測定を停止し、RS 通信を行います。

3.5 測定データ表示

(1) LCD 表示

本器は、4タイプのセンサーを選択し、その測定データをLCDに表示しています。 それぞれのセンサータイプの表示桁数は以下の通りです。

D、P	• • •	有効数字6桁(小数点第1位)	単位	mV
G	• • •	有効数字7桁(小数点第1位)	単位	μ ST
С	• • •	有効数字6桁(小数点第1位)	単位	Ω、無定量
Τ、Κ、S		有効数字3桁(小数点第1位)	単位	°C

但し、センサータイプCは、2CH分で測定、表示をします。 測定結果は、奇数CHが抵抗比、偶数CHが抵抗値を表します。

(2) 校正係数、初期值

測定データを計算補正する時校正係数と初期値を代入して補正データを算出することができます。

算出式は下式の通りです。 補正データ = (測定生データ - 初期値)× 校正係数

内部メモリーのデータは、測定生データです。 転送データは、計算補正データです。 出荷時は、校正係数=1、初期値=0に設定しています。

(3) エラーメッセージ測定データの異常をエラーメッセージとして、LCD表示します。

 ①A/D OVER RANG 測定範囲を超える入力が印可されると、表示します。
 入力測定範囲はセンサータイプによって異なります。

センサータイプ	D, P, C	+2000mVを越えた場合
		-2000mV を越えた場合
センサータイプ	G	+50mVを越えた場合(+20000µST相当)
		-50mVを越えた場合(-20000μST相当)
センサータイプ	т.к	+80℃を上回った場合
		-10℃を下回った場合

センサー選択の設定と接続センサーが合致しているか確認をお願いいたします。

②A/D TIME OUT

データ変換回路が正常に動作しなかった時に表示します。 内部ハード上のトラブルなので、POWER OFFして弊社に連絡して下さい。

③ UNIT ERROR

スキャナーユニットと設定センサータイプが異なった時、またはスキャナーユニットが接続されていない 場合に表示します。

ご不明な点は弊社製造部までご連絡下さい。 TEL 046-233-7715 FAX 046-233-7878